TENSOR ALGERR
'\

ion : The concept of a tensor has its origin in the developmen i
diﬂ-e::nt:;(;?;::rlnoel:ﬂ' by Gauss, Riemann and Christoffel. The emergence of te;ss([::
calculus, as a systematic branch of mathematics is due to Ricci and hig
Lewg",g;,g the study of elasticity and physics of crystals, the physicists ¢
across with new kind of quantities called aﬁer?vard.s tenso.rs, more complex thay
vectors. During the study of stresses and tensions in the interior of a deformey
body, they discover a collection of six numbers mseparable from one another, whic,
behave like the six components of a certain quantity.

\/éef. Tensor. The physical quantities which have more than one direct;
representem;—the mathematical entities, are called tensors.
Scalars and vectors are special cases of tensors.

0. CONTRAVARIANT AND CO-VARIANT VECTORS|

(Kanpur Riemannian Geom. 1975; Banaras Riemannian Geom. 1 970

ame

ion are

Let Ai,i=1, 2,...,n, be n functions of co-ordinates xl.xz, XN I the
quantities A are transformed to another co-ordinate system x', x2, 23,
. A .
according to the rule A" =A" gxu ,
x

then the functions A’ are called components of contravariant vector.
et A;,i=1,2,3,...,n, be n functions of co-ordinates xl,xz, <. x™ If the

quantities A; are transformed to another co-ordinate system x'l, 1’2, ey x™
according to the rule
a
A=A
) axll £
then the functions 4; are called components of a covariant vector.
Tllxe contravariant (or covariant) vector is also called a contravariant (or
covariant) tensor of rank one.
(Kanpur Riemannian Geom. 1985, 69;
Banaras Riemannian Geom. 62)

. 11) be n? functions of co-ordinates x1, x2, ..., 2" and let

.., x™ according to
i

Let AY (j,j=1, 2,3,.

these transform to A°

i 5 .
the rule In another co-ordinate system x'), x'2, .

AV=pcB M oxd
0x% 9xB’

(12) v

Pupj) |

AN

Tensor Algebra

i i sor of rank two.
Then AY are called components of a contravariant ten .

. 1 %
i irJ & i f co-ordinates X7, X5 -+
Similarly if Ay (,j=1,2,...,1) be n? functions o

dinate system o122, ..., x" by
i i -ordina W s
and if A;; are transformed to A’;; in another co-ordin \

le
™ g oo
A= Aap oxt 0xY’
then A;; are said to be covariant tensor of rank two.
]

i s i i be
Finally, if the n? functions Af(i,j=1,2,...,n) of co-ordinates =

rmed of A’%in another co-ordinate system x* according to the rule
J .
o 321 0P
B Bx® axd
i i ixed tensor of rank two.
i gre said to be components of mixe or ¢ .
then’l‘?}-{e upper position of the suffix is reserved to indicate contravariant character

iti i d to indicate covariant character.
lower position of the suffix is reserve e co
wher;;z :l;il:of a tinsor is defined as the total number of real indices per component.

transfo
At=A

iyip i, .
A tensor of the type A;ijz o, is l.mown as a tensor of the type (r, s). Thus the

d ( d (2, 0) respectively.
= ors A;; and AY are of the type (0, 2) and (2,
. ’ (Kanpur Riemann Geom. 1 987,. 85)
Instead of saying that “let Aij be the components of second rank covariant

: N .
tensor”, we always say, “let A;; be second rank covariant tensor.” Tensors of higher

ranks are defined as follows : N
(i) Covariant tensor of rank / :

A _ ox% 0x%  0x™
iy u,mz...a‘mm'"m
(ii) Contravariant tensor of rank { : .
Ay iy =Aalml..4u,3x_'i‘6x_'i2 ~9at
ox% ox®™  9x%
(iii) Mixed tensor of rank [+ m :
gy iy _ g 000 0y a1 ox: ot P ok AxPm

jljz "'-im - Bl ﬁz ﬁm axal ax“z axal ax'jl ax'j'z axdm

A tensor of rank m in n dimensions has n™ components.

X Thus the general form of tensor includes vectors (temsors of rank one) and
' scalars (tensors of rank zero).

The key property of a tensor is the transformation law of its components. The
precise form of this transformation law is a consequemce of the physical or
geometric meanimgs of the tensor.

ProbletwHow many components does a tensor of rank 3 have in a space
of 4 dimensions? (Kanpur B.'Sc. 1993)

Solution. Total number of components = n™ = 4% = 64. '
where n = dimension =4, m = rank = 3.
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i 2. (a) GRADIE =y ey, Tensor Algebra
i ordi 1ot
g Let o be a scalar function of co ordinates x', 2, ..., x". The gradi L x4 9T
i by grad ¢ or V¢, is defined as its ordinary partial derivative. TiTuS ient ¢, de"“"!d and A=Ay EZ 232
Vo= % . : A=A % .4 &
' ie. 178197 T2 o
2, (b) TENSOR FIELD. DEFINITION A=A ;3’-5 +Aqg 5?‘
If a tensor is defined at all points of a curve or throughout the space v ; Writing these with the help of (2).
then we say that it forms a tensor field. However we will use interchan u itselp Ay=Aqly+Agmy ... (4)
terms tensor and tensor-field. Geably g, A'p=Aqlg +Agma
Theorem 1. To show that there is no distinction belwe i ired 1t follows.

) en 7 Cofhparing (3) and (4), the requirec resu o . .
and covariant veclors when we restrict ourselves to reclang,f[?;:.tga"anang m’,’,em 2. (a) To prove that the transormations of @ contravariant
transformations of co-ordinates. artesigy vedlor form a group. i

(Vikram University Ujjai (Kanpur Riemannian Geom. 2000, 1997, Gujrat 1972)
Banaras Riemannian Gl.'onﬁ(: " 1905, Or, To prove that the transformations of a contravariant pector ;g
Proof. Let (x,y) be co-ordinates of a point P w.r.t. orthogonal cartesigxmm transitive. ) (Kanpur B. Sc. 1998, Meerut ?99 g
Xand'Y. Let (x', ) be the co-ordinates of the same point P relative to nrthog:x'zs Proof. Let A be a contravariant vector. Consider co-ordinate transformations :
cartesian axes X’ and Y". Let (I, my) and (ly, mp) be direction cosines of tnhal o= @y, 2t =2 ("), thatis,
axes-X” and Y’ respectively. Then we have the relation 3 ' "’l
=lx+my (iz-——>‘(‘;'i3——>(12i
4 . 7 i
¥ =lox + myy (1) , fr A P B
From which we have n,¢aselon &', we have P
x=lx' + Ly J AIa:APFxF (1)
= 4 ’ e (2) G f
'i' ml’; . ) In case of transformation x* > ',
é’c" . ., X =xx"=y. A"i_Ala.El_i_Apé’x_lciﬂ by (1
onsider contravariant tr:msformatmna " 2 : SATGa T onp axe’ v (1)
i Y I ’ X s
A‘=A"5:;—=A15X—I+A2%. or, A"‘=A”a—x;
x x
A=Al ai'l_ + A2 %'_1 This proves that ifwe make the transformation from (i) to (iii), we get the same
=45 922 law of transformation. f’!?hls property is expressed by saying that transformations of
P 2 a contravariarnt vector form a group.
and A2=4! _@I_l +A2 91_2 Theorem 2. (byb prove that the transformations of a covariant vector
ox ox is transitive.
ie., il o’ + A2 o Proof. Let A; be a covariant vector. Consider the coordinate transformation:
- ox ay a2
and A2 4l %L'+Az %L X) _— X’i)——-’ (HX
» ' ' y ' " "
Writing these with the help of(]i), ) , / In case ofx‘————r;c’f, we have
A=Al +A%my @ / e A=A P Ion)
A’z =A112 +A2m2 i : ‘ « P P s
Consider co-variant transformation . In case of " —— 2™,
« 1 2~ @ , e
At’=Aa%=A1§%+ 2%‘,—‘, A=A - (@)
% % x ‘e
P ol ox2 Combining (1) and (2), we get
1= Al Wl + Az —
B ox ox'1
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16 VY 2
A":(A ’a}';)ar»d

P ax®
-4,(E23)

&aF
.'\(:A_rg . 0 to i) i,

= +oct transformation from (i) to (1), we get the
This proves T2 et d£( property is expressed by saying that
=¥ o 3
nsfrmaton. L 24
same bow of T -ar or is transitve. ) ]
\—- —ations of @ €OV ..naﬂ‘;:; the equations of tmfts.fonnahon‘?fa Mixeq
h_.'rbeotmmri’- “ TDprzse up property. (or transitive property )— i
temsor (i ) possess the gro (Kanpur Riemannian Geom. 1999, 95, Agra 75,
t Bzm;ms Riemannian Geom. 70; Gujrat 7,
be mixed tensor. Consider co-ordinate transformations

=1t (). H=x" (x*), ?.hat is

SN

H—— @— (ia1)

o
Y _;A'; ———)Aj

A
25
J

tram<iorm2a

Proof. Let -'.‘_vl

=%, we have
4161:4}72:2%_ - (1)
< “‘g
-
ik ion 2 - 2%, .
L e OO P i a® a8 2 arP
_as AP T

Imese T

e - . —., by ()
Al =4 Pl am? ¥ o x? & oY
o ot &x"ﬂ)_Apax_"‘ﬁ
:Ag(gp_;)(aﬁaﬂ' T 3P g
i gp &3
or, Aj=47 P ol

This proves that if we make the direct transformation from (i) to (iii), we get
the same lpzw of transformation. This property is expressed as :
Tersor lzw of trensformation possess group property.

r— ADDITION AND SUBTRACTION OF TENSOR
Two tensor=czn be added or subtracted provided they are of the same rank and
similar character. o
The;m or difference of two tensors is a tensor of the same rank and similar

j%:eorem 3.If AP9 and BP9 are tensors, then their sum and difference

are fensors. (Purvanchal 1997, 95; Roorkee M.E. 1965)

Or, To prove that the sum of two tensors of the same kind is again a
tensor of the same kind.

(Vikram Unicersity Ujjain 1995; Kanpur B. Sc. 1993, 1998, 2003, 2004, )

Proof. Let AP? and BP? be tensors so that they satisfy the tensor law of

transformations namely

Tensor Algebra 17
3 =l
A:.”/=A,”E££. (1)
o 97 oy
i ot 3z 3
BV=pp1 X _0X ox .. (2
T P A =
(i) The sum of AP? and BP9 is defined as AP+ BPI=CP9 (say)
.. (3)

To prove that C is a tensor.
Adding (1) and (2),

A’ikj+8’2=(Aqu+Brpq)Maij£'
oxP 39 ox*k

Using (3), we get

This proves that CP? satisfies the tensor law of transformation and hence
CP9 is a tensor.
(ii) The difference of AP? and B2 is defined as
AP -BPI=DP7 (let)
Subtracting (2) from (1) and then using (4) -

N Ay
172:1),}’73"—3"— o

- (4)

P ad ort
This confirms the tensor law of transformation.

Hence D7 is a tensor, i.e., AP~ BP9 is

-4. MULTIPLICATION OF TENSORS| (Kanpur 1985)
(g

The product of two tensors is a tensor whose rank is the sum of the ranks of the
two tensors. More generally, if we multiply a tensor Aj“;’ -
[ Jrs

a tensor.

’ _;' (which is co-variant of

order m and contravariant of order /) by a tensor qu 2 : i "‘:’, (which is covariant of
142 m

order m’ and contravariant of order I') then the product obtained is

flfz"'fl BFP1P2-- Py

J1dp dm 9192 - 9
atensor of rank ! + I+ m + m’. This product tensor is covariant of order m + m’ and
contravariant of order [ + /. Also this product is called open proudct or outer
product of the two tensors. This is proved in the following theorem :

Theorem 4. (a) The tensor product of the tensors of the type (rys) and

(', 8) is @ tensor of the type (r+r,s+s’). (Kanpur 1986, 84, 83)

Proof. Let _A;.‘j.z ;’ be a tensor of the type (r, s).
172 =+ Jyg

Let Bz'zz";z', be a tensor of the type (', s").
192y

Write Cil wd,py.p) =Ai’ ey, Bp, By . (1)
Jy - Joqy g, Jidy T4y g,
This product of tensors is called open product.

\
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iy irP1 P/ i a tensor of the type (r+r,s+s’).
A CJ': = de f:; sformations,
By tensor 1aw © : a‘:' P A
A e e e
£y B‘"l""’r"-’_"‘ia_l ﬂ@xﬂ_ﬁ.ﬂ-;
L " oxel a;'bx axbs - (3)
Multiplying (2) and (3) properly amoil notmg, 3), .
@ o 0,0y 8 iy d Py ...pr’ir; _al_L_a_xh_
C‘ﬂ:-»ﬂ.br“b:'_ Gy de@e 95 9gh ox'r ax'ﬁ.l ) ’

Bx’ﬂs oxP1 T oxPr oxby ﬁ

i PP i o tensor of the type ( + 17, s + 7).
mwnﬁ:msmatcjl Sy Gy q, )

P"Oved_

Results of outer product of tensors :
(1) The outer product of two contravariant vectors is a contravariant tengep &
order 2. Every contravariant tensor of order 2 is not necessarily the tensor (outey)

product of two contravariant vectors. .
(2) The tensor product of two covariant vectors is a covariant tensor of order 9

But every covariant tensor of order 2 is not necessarily the tensor prouct of tw,

covariant vectors.
(3) The tensor product of a contravariant vector and a covariant vector is a

mixed tensor of order 2. But every mixed tensor of order 2 is not necessarily the
tensor product of a contravariant vector and a covariant vector.
Theorem 4. (b) Tb prove that the open product of two vectors is a tensor
of order two. Is the converse true ?
(Meerut 1992; Kanpur Riemannian Geom. 1999)

Proof. Let C_,f be the open product of two vectors Af and B ;, then

i i
Aim. C} is tensor of order 2.
By tensor law of transformation,
i aq Ot axP
At=pcZ_ pr_p X
a5

Multiplying these properly,
AliB_szaB Eaiﬁ
J B ax ge”
Using (1), ¢i= Cg L% aiﬂ
g 4 P 0x® gpt”
is confirms that, C{ is a tensor of order 2.

Second Part, Th, 1
. € convers; .
a tensor of order 2, But every e 1s not true, i.e., tensor product of two vectors is

of two vectors, tensor of order 2 is not necessarily thé tensor product

Similar Problem, Pro

vectors is q conh-ava"iantve that the outer

tensor, product of two contravariant

(Kanpur B. Sc. 1998)

Tensor Algebra

Hint. Write ci=Al B/ and proceed as Theorem 4b.
Theorem 4. (c) Show that the outer product of

order is sum of the orders of the two tensors. .
ot (Kanpur 1984; Banaras Riemanntian Geo

two tensors is @ tensor

m. 1963)

Proof. Let AJ/ and BJ, be tensors. Pet o
cih=A) BE
oduct of the two tensors.

be the outer pr t '
ijp ig a tensor of rank 6, the result will follow.

If we show that Cigr By .
i 0x'% 9x’ 0
oy _ A OX 0 02 .. (2)
We have A=A T o 2
Bl =B ' ot o .. (3)

qr axp ™ ax,[ b
iplyi d noting (1), we get
Multiplying (2) by (3) properly an g
b gt _cip 2% P 2 0 3t B
Y mt kqr ot 3y ox’l X ™ ot
By virtue of (1), this gives
oot _ g 8% 2% ' 02 2 2
ymt ~ R g i aaP axt ax™ O
This confirms the law of transformation of a mixed tensor of rank 6. Hence

CE;‘;’_, i.e.,Ak‘j Bfisa mixed tensor of rank 6.
(Kanpur 1985, 87) -

Let A% be a contravariant vector, and B, covariant vector. The product A°B is
called scalar or inner product of the vectors A% and B,,. This scalar product is an
invariant, i.e., it has the same value in any set of co-ordinates.

: ot P
” r_ AQ YA =l
For A lBi =A ot BP axri
oxt 9xP
_pop 9% 0xX
=48 ax% ox™*
~a9p % _pep & -A*B_ =AlB,
P 3 p o a i
ie. A“B;=A'B,
This proves that :
“The inner product of covariant and contravariant vectors is a scaler
invariant.” (Gorakhpur 1995)

The product AY B ) of two tensors AYand B ip 1S called an inner product of the
two tensors. This process is called inner multiplication of the two tensors. The
inner product is a tensor.

That is to say, if we set in a product of two tensors one contravariant and one
covariant suffixes equal, the process is called inner multiplication and the resulting
tensor is called the inner product of the two tensors. For example,

ij pk i ij
Ak qur’ Ak ?qr'Ak B;jr
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all the inner products of the tensors
A} and B;q "

To show that the inner product of the tensor AL and B?* ;
t i3q

Theorem B.
tensor of rank three.
(Kanpur B. Sc. 1996; M. Sc. 98, 97; Roorkee M.E, 19
Proof. The inner product of tensors AP and B:’s is AP B;®. We want to show th Z
AP Bi'is a tensor of rank three. at
By tensor law of transformation,
ox’P 9xP  _m 0x 0x” 9x7

Aprrmz_Aa________‘ )
r-t p ox® ox’" q axl ox™ ax:t
9P oxP ox™ 0x”® 9x7

- AO‘. Blm Lo Al

BZa 5p0 g axt 0x™ ox”

oxP axP ox”® 0x7

=Aa Blm.

BE0 5y aul o™ ox”

oxP op x” 9x7

—- A% Blm ox” s
B~q axa l axm ax.rt

- A?‘ Blm

7 9x® ™ ox”
o m 0xP 0x”° ox?
A{.’B;'s:A?Bq’" = ~.

ox% ox™ ox
transformation of a mixed tensor

But this is the law of of rank 3. Hence
AP BI* is a mixed tensor of rank 3. |
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